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Based on the rigorous Green function formalism to describe the grazing-

incidence small-angle X-ray scattering (GISAXS) problem, a system of two

linked integral equations is derived with respect to amplitudes of the reflected

and transmitted plane q-eigenwaves (eigenstate functions) propagating through

two homogeneous media separated from each other by a rough surface

interface. To build up the coupled solutions of these basic equations beyond the

perturbation theory constraint 2k��0 < 1, a simple iteration procedure is

proposed as opposed to the self-consistent wave approach [Chukhovskii (2011).

Acta Cryst. A67, 200–209; Chukhovski (2012). Acta Cryst. A68, 505–512]. Using

the first-order iteration, analytical expressions for the averaged specular and

non-specular scattering intensity distributions have been obtained. These

expressions are further analysed in terms of the GISAXS parameters {k, �, �0}

and surface finish ones f�; ‘; hg, where � and �0 are the scattering and incidence

angles of the X-rays, respectively, � is the root-mean-square roughness, ‘ is the

correlation length, h is the fractal surface model index, k = 2�/�, and � is the

X-ray wavelength. A direct way to determine the surface finish parameters from

the experimental specular and diffuse scattering indicatrix scan data is discussed

for an example of GISAXS measurements from rough surfaces of �-quartz and

CdTe samples.

1. Introduction

Nowadays the grazing-incidence small-angle X-ray scattering

(GISAXS) technique is widely used as a powerful tool for the

systematic investigation into and study of solid and liquid

surface interfaces, multilayered semiconductor nanostructures

and optical mirrors. GISAXS is effective for control of

finishing processes of optical surfaces in the length range with

a precision of a few nanometres (see, e.g., Church & Takacs,

1991; Asadchikov et al., 2003; Pietsch et al., 2004; Schmidbauer

et al., 2008; Renaud et al., 2009).

Novel advanced technologies for fabricating X-ray optical

devices require strict control of the surface perfection and, in

turn, push ahead the GISAXS technique.

The latter allows one, at least, to get quantitative informa-

tion such as the root-mean-square (r.m.s.) roughness � and

correlation length ‘ of rough surfaces in the scale from a few

nanometres for the r.m.s. roughness � up to some micrometres

for correlation length ‘ (Pietsch et al., 2004; Renaud et al.,

2009).

GISAXS studies are grounded in the theoretical works

widely cited as Névot & Croce (1980), Petrashen’ et al. (1983),

Vinogradov et al. (1985), Sinha et al. (1988), de Boer (1994,

1995, 1996). In the work of Névot & Croce (1980) the statis-
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tical scattering factors that assign the reflected and transmitted

specular intensities of the GISAXS waves propagating

through the twofold rough-interface medium have been

derived.

In order to investigate the GISAXS problem in the small-

roughness approximation 2k��0 < 1, the rigorous Green

function formalism (Andronov & Leontovich, 1926) has been

applied in Vinogradov et al. (1985).

The theoretical GISAXS problem has been considered in

detail in Sinha et al. (1988) where the distorted-wave Born

approximation (DWBA) has been used to describe the spec-

ular and non-specular scattering waves propagating through

the twofold rough-interface medium.

It should be mentioned that the theoretical GISAXS

problem has been analysed in detail in Kozhevnikov &

Pyatakhin (2000) and Kozhevnikov (2010), staying in the

frame of the Green function formalism and the small-

roughness approximation 2k��0 < 1 (hereafter, k ¼ 2�=�, � is

the X-ray wavelength, �0 is the incidence angle of the X-ray

beam). Note that the above authors (Kozhevnikov & Pyata-

khin, 2000, p. 256) have concluded that some additional

assumptions (beyond the conventional DWBA approximation

of quantum mechanics) have been used in the works of Sinha

et al. (1988), de Boer (1994, 1995) and others. Such a conclu-

sion, in turn, calls into question the plausibility of at least some

results obtained therein.

Despite the generic attraction, there is a considerable

obstacle in the implementation of the DWBA approach to the

theoretical GISAXS problem, in particular a lack of the

DWBA derivation, which follows ab initio from the Green

function formalism (at least, we do not know any papers where

it has been done).

Recently, with the use of high-order X-ray scattering in the

frame of the Kirchhoff–Fresnel approach, attempts to go

beyond the Debye–Waller approximation in calculations of

the specular scattering factors have been made in Salikhov et

al. (2011). In that method, the specular reflected and trans-

mitted wave amplitudes are dependent both on the r.m.s.

roughness � and correlation length ‘.

Trying to go beyond the small-roughness approximation,

2k��0 < 1, the self-consistent wave approach (SCWA) based

on the Green function formalism has been proposed in

Chukhovskii (2011). In addition, to justify the SCWA, special

attention is paid to bind the SCWA solutions in such a manner

that they satisfy the optical theorem for the large-roughness

parameter 2k��0 � 1 (Chukhovskii, 2012). Indeed, the fact

that the GISAXS solutions should satisfy the optical theorem

is the sole criterion of correctness for the theoretical approach.

In this respect, it should be mentioned that the DWBA solu-

tions (Sinha et al., 1988; de Boer, 1995) fail to satisfy the

optical theorem.

Clearly, it is desirable to achieve a modification of the

GISAXS theory for the case of the large-roughness parameter

2k��0 � 1, where the perturbation theory approach is

evidently not effective. In other words, the relevant GISAXS

theory beyond the constraint 2k��0 < 1 is still of great interest.

In the present paper, we report on a novel modification of

the GISAXS theory based on the Green function formalism.

It is based on a series expansion of the GISAXS wavefield

over the eigenstate-function waves, the so-called plane

q-eigenwaves. The latter are nothing but the plane waves

propagating on both sides of two homogeneous media sepa-

rated from each other by a rough surface interface.

The present paper is organized as follows. In x2, following

Chukhovskii (2011), the Green function formalism is briefly

reproduced for completeness. The Green function is nothing

but the two-dimensional Fourier integral of the product of the

two linearly independent Fresnel solutions corresponding to

the direct and mirror-reversed scattering geometry for the flat

surface interface (z = 0) that separates the two homogeneous

media.

In x3, the two linked integral equations to determine non-

averaged amplitudes of the reflected and transmitted plane

q-eigenwaves are obtained by the use of an expansion of the

GISAXS wavefield over these q-eigenwaves propagating on

both sides of the two homogeneous media. Then, staying in

the scope of the first-order iteration procedure, a solution of

these basic equations is built up. In this case, the zero-order

iteration solutions are nothing but the conventional Fresnel

amplitudes for the specular GISAXS waves propagating

through the twofold planar-interface medium.

In x4, the statistically averaged solution for the reflected

intensity distribution dRtotð�; ’; �0Þ=d� being the super-

position of the specular and non-specular GISAXS wave

components is derived (hereafter, � is the scattering polar

angle of the reflected beam and ’ is the scattering azimuth

angle of the reflected beam, see Fig. 1). To obtain it, we have

utilized the Gaussian statistical model of a rough isotropic

surface in terms of the r.m.s. roughness � and the cumulant

correlation function K2ðjx1 � x2jÞ in the sense of the famous

Kato paper (Kato, 1980). Analytical expressions are derived

for the specular reflectivity Rspeð�0Þ, non-specular intensity

distribution dR=d�ð�; ’; �0Þ and diffuse scattering indicatrix

(DSI) dR=d�ð�; �0Þ.

Hereafter, it is assumed that the grazing-incidence angle

�0 is fixed and then, for simplicity, it has been omitted
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Figure 1
GISAXS layout: k0 = q0 + kz(q0)n is the incident wavevector; kR = q0 �

kz(q0)n and jT = q0 + �z(q0)n are the wavevectors of the reflected and
transmitted specular waves, respectively; kR = q � kz(q)n and jT = q +
�z(q)n are the wavevectors of the reflected and transmitted non-specular
waves, respectively. n is the unit vector along the z axis perpendicular to
the reference plane z = 0; the lateral vectors q and q0 lie within the
reference plane z = 0 (’ = 0 in the specular case).



in the following expressions of dR=d�ð�; ’; �0Þ and

dR=d�ð�; �0Þ.

In x5, bearing in mind the description of the measured

specular reflectivity Rspeð�0Þ and non-specular DSI dR=d�ð�Þ
(see x6), the numerically simulated results for the distributions

Rspeð�0Þ, dR=d�ð�; ’Þ and dR=d�ð�Þ are presented and

analysed depending on the parameters fk�; k‘; �0=�crg of

interest for various values of the fractal surface model index

(FSMI) h = 1/4, 1/2, 3/4.

In x6, results of the specular and non-specular GISAXS

measurements are presented for �-quartz and CdTe samples

(the reference surface planes are f1120g and f111g, respec-

tively). The experimental data are analysed in terms of the

present approach to directly determine the surface finish

parameters such as the r.m.s. roughness �, correlation length ‘
and FSMI h, not using any of the least-square iterative tech-

niques in a �2 fashion (cf. e.g. Chukhovskii, 2009).

2. Theoretical background and notations. The Green
function formalism

Here, for completeness of the theoretical description, we

repeat the main milestones of a mathematics based on the

Green function formalism (cf. Vinogradov et al., 1985;

Chukhovskii, 2011).

Accordingly, the scalar wave equation may be properly

rewritten in the integral form

E rð Þ ¼ E0 rð Þ � k2
R

d3r0G r; r0ð Þ�� r0ð ÞE r0ð Þ; ð1Þ

where

�� r0ð Þ ¼ � � z0 � h x0ð Þ½ � �� z0ð Þ
� �

with hðxÞ being the surface height at the point x.

Herein, the Green (point-source) function Gðr; r0Þ is given

by

G r; r0ð Þ ¼ �i 4�ð Þ�2
R

d2q k�1
z qð Þ þ ��1

z qð Þ
� �

� exp iq x� x0ð Þ½ �
y2 z; qð Þy1 z0; qð Þ; z � z0

y1 z; qð Þy2 z0; qð Þ; z � z0

�
ð2Þ

everywhere in the twofold medium with the step-like electric

susceptibility �(r) = � �(z); �(z) is the Heaviside function:

�(z) = 1 for z > 0 and �(z) = 0 for z < 0.

Hereafter, � is the complex electric susceptibility;

� ¼ Re�þ iIm�, Re�< 0 and Im�< 0; �cr ¼ ð�Re�Þ1=2 is the

critical angle (typically, in the case of hard X-ray radiation

with wavelength � of the order of 0.1 nm Re� ffi �10�5,

Im� ffi �0:05Re�).

Functions y1(z, q) and y2(z, q) are the two linearly inde-

pendent solutions of the wave equation

d2y=dz2
þ k2 1þ �� zð Þ½ � � q2
� �

y ¼ 0 ð3Þ

relative to the variable z (the z axis is perpendicular to the

reference plane z = 0).

They represent the conventional Fresnel solutions

y1 z; qð Þ ¼
exp½ikzðqÞz� þ R1ðqÞ exp½�ikzðqÞz� for z � 0

T1ðqÞ exp½i�zðqÞz� for z � 0

�
ð4aÞ

and

y2 z; qð Þ ¼
T2ðqÞ exp½�ikzðqÞz� for z � 0

exp½�i�zðqÞz� þ R2ðqÞ exp½i�zðqÞz� for z � 0

�
ð4bÞ

in the direct and mirror-reversed GISAXS geometry, respec-

tively.

The reflection, R1(q) and R2(q), and transmission, T1(q) and

T2(q), coefficients take the form

R1 qð Þ ¼
kz qð Þ � �z qð Þ

kz qð Þ þ �z qð Þ
and R2 qð Þ ¼

�z qð Þ � kz qð Þ

kz qð Þ þ �z qð Þ
;

T1 qð Þ ¼
2kz qð Þ

kz qð Þ þ �z qð Þ
and T2 qð Þ ¼

2�z qð Þ

kz qð Þ þ �z qð Þ
; ð5Þ

where the wavevector components kzðqÞ and �zðqÞ equal to

kz qð Þ ¼ ðk2
� q2
Þ

1=2; �z qð Þ ¼ ð�2
� q2
Þ

1=2
ð6Þ

relate to the same lateral vector q parallel to the reference

plane z = 0; �2 = k2(1 + �).

The free term E0(r) on the right-hand side of the integral

wave equation (1) takes the form

E0 rð Þ ¼ exp iq0xð Þy1ðz; q0Þ ð7Þ

corresponding to the incident plane wave EincðrÞ ¼ expðik0rÞ.

It should be mentioned that the integration range over the

variable z0 on the right-hand side of the integral wave equation

(1) is given by the restricted interval, where the function of

�½z0 � hðx0Þ� ��ðz0Þ differs from zero, which, in turn, deter-

mines the behaviour of the reflected and transmitted waves at

infinity z!	1.

3. Linked integral equations in terms of the plane
q-eigenwaves for exploring the GISAXS phenomenon

Accordingly, the asymptotic GISAXS solutions for z! 	1

can be cast in the form

ER x; zð Þ z!�1

�� ¼ R1ðq0Þ exp½iðq0x� kzzÞ� þ
i

2�

Z
d2q

kzðqÞ

� exp½iqx� ikzðqÞz�ARðq; q0Þ; ð8aÞ

ET x; zð Þ z!1

�� ¼ T1 q0ð Þ exp½iðq0xþ �zzÞ� þ
i

2�

Z
d2q

�zðqÞ

� exp½iqxþ i�zðqÞz�ATðq; q0Þ; ð8bÞ

where the scattering amplitudes ARðq; q0Þ and ATðq; q0Þ are

introduced as

AR q; q0ð Þ ¼ �
�k2

4�

Z
d2x expð�iqxÞ

ZhðxÞ
0

dzy1 z; qð ÞE x; zð Þ;

ð9aÞ
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AT q; q0ð Þ ¼ �
�k2

4�

Z
d2x expð�iqxÞ

ZhðxÞ
0

dzy2 z; qð ÞE x; zð Þ:

ð9bÞ

Further, one uses the Fourier representation of the

GISAXS wavefield Eðx; zÞ in the form of the series expansion

in reciprocal space over the plane q-eigenwaves, namely:

E x; zð Þ ¼
1

2�ð Þ2

Z
d2q

�
ð2�Þ2	2ðq� q0Þ exp½iqxþ ikzðqÞz� þ BðqÞ exp½iqx� ikzðqÞz� for z< hðxÞ

CðqÞ exp½iqxþ i�zðqÞz� for z> hðxÞ

( )
:

ð10Þ

By combining equations (8a), (8b)–(10) to determine the

plane q-eigenwave amplitudes B(q) and C(q), one can readily

find the following system of two integral equations:

BðqÞ ¼ ð2�Þ2	2ðq� q0ÞR1ðq0Þ �
i�k2

2ð2�Þ2kzðqÞ

�

Z
d2x expð�iqxÞ

Z
d2q1

ZhðxÞ
0

dzy1ðz; qÞ

�

ð2�Þ2	2ðq1 � q0Þ exp½iq1xþ ikzðq1Þz�þ

Bðq1Þ exp½iq1x� ikzðq1Þz�

 !
for hðxÞ> 0;

Cðq1Þ exp½iq1xþ i�zðq1Þz� for hðxÞ< 0

8><
>:

9>=
>;;
ð11aÞ

CðqÞ ¼ ð2�Þ2	2ðq� q0ÞT1ðq0Þ �
i�k2

2ð2�Þ2�zðqÞ

�

Z
d2x expð�iqxÞ

Z
d2q1

ZhðxÞ
0

dzy2ðz; qÞ

�

ð2�Þ2	2ðq1 � q0Þ exp½iq1xþ ikzðq1Þz�þ

Bðq1Þ exp½iq1x� ikzðq1Þz�

 !
for hðxÞ> 0;

Cðq1Þ exp½iq1xþ i�zðq1Þz� for hðxÞ< 0

8><
>:

9>=
>;:
ð11bÞ

Further, inserting expressions (4a), (4b)–(6) into equations

(11a), (11b), the straightforward routine calculations yield a

system of two integral equations:

BðqÞ ¼

ð2�Þ2	2ðq� q0ÞR1ðq0Þ �
�k2

ð2�Þ22kzðqÞ

Z
d2q1

Z
d2x expð�iðq� q1ÞxÞ

�

"
T1ðqÞ

 
ð2�Þ2	2ðq1 � q0Þ

expðið�zðqÞ þ kzðq1ÞÞhðxÞÞ � 1

ð�zðqÞ þ kzðq1ÞÞ

� 	

þ Bðq1Þ
expðið�zðqÞ � kzðq1ÞÞhðxÞÞ � 1

ð�zðqÞ � kzðq1ÞÞ

� 	!
�½hðxÞ�

þ Cðq1Þ

 
expðiðkzðqÞ þ �zðq1ÞÞhðxÞÞ � 1

ðkzðqÞ þ �zðq1ÞÞ

þ R1ðqÞ
expðið�zðq1Þ � kzðqÞÞhðxÞÞ � 1

ð�zðq1Þ � kzðqÞÞ

!
�½�hðxÞ�

#
ð12aÞ

CðqÞ ¼

ð2�Þ2	2ðq� q0ÞT1ðq0Þ �
�k2

ð2�Þ22�zðqÞ

Z
d2q1

Z
d2x expð�iðq� q1ÞxÞ

�

" 
ð2�Þ2	2ðq1 � q0Þ



expð�ið�zðqÞ � kzðq1ÞÞhðxÞÞ � 1

�ð�zðqÞ � kzðq1ÞÞ

þ R2ðqÞ
expðið�zðqÞ þ kzðq1ÞÞhðxÞÞ � 1

ð�zðqÞ þ kzðq1ÞÞ

�

þ Bðq1Þ



expð�ið�zðqÞ þ kzðq1ÞÞhðxÞÞ � 1

�ð�zðqÞ þ kzðq1ÞÞ

þ R2ðqÞ
expðið�zðqÞ � kzðq1ÞÞhðxÞÞ � 1

ð�zðqÞ � kzðq1ÞÞ

�!
�½hðxÞ�

þ Cðq1ÞT2ðqÞ



expðið�zðq1Þ � kzðqÞÞhðxÞÞ � 1

ð�zðq1Þ � kzðqÞÞ

�
�½�hðxÞ�

#

ð12bÞ

relative to the amplitudes B(q) and C(q) [	2(q� q0) is the two-

dimensional delta function].

How can we get solutions of the two equations (12a), (12b)

beyond the small-roughness approximation 2k��0 < 1? One is

supposed to apply the general iteration procedure for building

up the q-eigenwave amplitudes BðqÞ and CðqÞ. To do this, at

each order of the n-step iteration we have to take into account

the nth-order scattering of the q-eigenwaves in the twofold

rough medium.

Then, we put

BðqÞ ¼ B0ðqÞ þ B1ðqÞ þ . . . and B0ðqÞ ¼ ð2�Þ
2	2ðq� q0ÞR1ðq0Þ;

CðqÞ ¼ C0ðqÞ þ C1ðqÞ þ . . . and C0ðqÞ ¼ ð2�Þ
2	2ðq� q0ÞT1ðq0Þ:

ð13Þ

Inserting expansions (13) into equations (12a) and (12b) and

confining ourselves by terms of the first-order iteration, one

obtains the amplitudes B1ðqÞ and C1ðqÞ:

B1ðqÞ ¼ �
�k2

2kzðqÞ

Z
d2x expð�iðq� q0ÞxÞ

�

"
T1ðqÞ


�
expðið�zðqÞ þ kzðq0ÞÞhðxÞÞ � 1

ð�zðqÞ þ kzðq0ÞÞ

	

þ R1ðq0Þ

�
expðið�zðqÞ � kzðq0ÞÞhðxÞÞ � 1

ð�zðqÞ � kzðq0ÞÞ

	�
�½hðxÞ�

þ T1ðq0Þ



expðiðkzðqÞ þ �zðq0ÞÞhðxÞÞ � 1

ðkzðqÞ þ �zðq0ÞÞ

þ R1ðqÞ
expðið�zðq0Þ � kzðqÞÞhðxÞÞ � 1

ð�zðq0Þ � kzðqÞÞ

�
�½�hðxÞ�

#
;

ð14aÞ
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C1ðqÞ ¼ �
�k2

2�zðqÞ

Z
d2x expð�iðq� q0ÞxÞ

�

"


expð�ið�zðqÞ � kzðq0ÞÞhðxÞÞ � 1

�ð�zðqÞ � kzðq0ÞÞ

þ R2ðqÞ
expðið�zðqÞ þ kzðq0ÞÞhðxÞÞ � 1

ð�zðqÞ þ kzðq0ÞÞ

�

þ R1ðq0Þ



expð�ið�zðqÞ þ kzðq0ÞÞhðxÞÞ � 1

�ð�zðqÞ þ kzðq0ÞÞ

þ R2ðqÞ
expðið�zðqÞ � kzðq0ÞÞhðxÞÞ � 1

ð�zðqÞ � kzðq0ÞÞ

��
�½hðxÞ�

þ T1ðq0ÞT2ðqÞ



expðið�zðq0Þ � kzðqÞÞhðxÞÞ � 1

ð�zðq0Þ � kzðqÞÞ

�
�½�hðxÞ�

#
:

ð14bÞ

It should be mentioned that the complex terms on the right-

hand sides of expressions (14a) and (14b) are the partial

scattering amplitudes for the plane q-eigenwaves, propagating

through the twofold rough medium (cf. Chukhovskii, 2011).

Hereafter, for simplicity we will consider only the reflected

q-eigenwaves. Following Chukhovskii (2011), an expression

for the entire reflected intensity distribution can be written as

dRtotð�; ’Þ

d�
¼ ð2�Þ�2

k2S�1
2

sin2 �

sin �0

BðqÞ
�� ��2; ð15Þ

where the symbol j. . .j2 denotes the ensemble average

procedure, d� ¼ cos �d�d’ is the elementary solid angle for

the reflected beam, S2 is an area of a rough surface impinged

on by the incident X-ray beam.

As it follows from equation (15), the intensity distribution

dRtotð�; ’Þ=d� is divided into the two terms

dRtotð�; ’Þ

d�
¼

dRspecð�; ’Þ

d�
þ

dRð�; ’Þ

d�
; ð16Þ

where the first term determines the specular intensity distri-

bution

dRspecð�; ’Þ

d�
¼ ð2�Þ�2

k2S�1
2

sin2 �

sin �0

B0ðqÞ þ B1ðqÞ
�� ��2 ð17aÞ

and the second one yields the non-specular intensity distri-

bution

dRð�; ’Þ

d�
¼ ð2�Þ�2

k2S�1
2

sin2 �

sin �0

½B1ðqÞB


1ðqÞ�jcum; ð17bÞ

on the right-hand side of equation (16).

Note that the expression (17b) for the non-specular inten-

sity distribution is determined by the so-called cumulant

average of bilinear combination B1ðqÞ � B


1ðqÞ (Kato, 1980).

Using the Gaussian roughness statistics and introducing

into consideration the PSD2Dðjq� q0jÞ function, the straight-

forward routine calculations yield the following robust

expressions for the reflected specular and non-specular

intensity distribution, respectively:

dRspecð�; ’Þ

d�
¼ k2 sin �0	2ðq� q0Þ R1ðq0Þ

�� ��2f ðq0Þ ð18Þ

and

dRð�; ’Þ

d�
¼
j�j2k2
Rðq; q0Þ

16�2 sin �0

PSD2Dðjq� q0jÞ: ð19Þ

Then, as it follows from equations (18), (19) the specular

reflectivity Rspecð�0Þ is equal to

Rspecð�0Þ ¼ jR1ðq0Þj
2f ðq0Þ ð20Þ

and the corresponding expression for the DSI dR=d�ð�Þ takes

the form [dR=d�ð�Þ ¼ cos �
R

d’ dR=d�ð�; ’Þ]

dR

d�
ð�Þ ¼

j�j2 cos �
Rðq; q0Þ

16�2 sin �0

k2PSD1Dðq; q0Þ: ð21Þ

Expressions for the PSD2Dðjq� q0jÞ and PSD1Dðq; q0Þ func-

tions are given in Appendix A. Appropriately, expressions for

the specular and non-specular scattering factors, namely f ðq0Þ

and 
Rðq; q0Þ, are given in Appendix B.

Before proceeding further, it is important to clarify some

points of the present GISAXS theory approach beyond the

constraint 2k��0 < 1.

First, the above analytical formulas (19)–(21) are derived in

the scope of the first-order iteration procedure to solve the

integral equations (12a), (12b). Note that the specular scat-

tering factor f ðq0Þ obtained in the form of equation (31) (cf.

Appendix B for details) is different from the Debye–Waller

factor fDWðq0Þ. For this, both of them contain only the r.m.s.

roughness �-dependence.

It remains to be seen how well it will work if one takes into

account the high-order scattering effects in a proper way. One

thing is clear, that consideration of the high-order iterations

must lead to the additional ‘-dependence of the specular

scattering factor f ðq0Þ. It is a good topic for future work to

improve the present approach of the GISAXS theory. In this

respect, it should be mentioned that the high-order scattering

effects have been considered in Salikhov et al. (2011), where

the specular scattering factor f ðq0Þ becomes dependent on

both the r.m.s. roughness � and correlation length ‘.

Second, when the ensemble averaging procedure is applied

to obtain expressions (18) and (19) we assume the Gaussian

statistics of roughness and the K-correlation model for a rough

surface. In particular, we utilize the PSD2Dðjq� q0jÞ function

in the form of equation (26), widely used in the GISAXS

theory (Sinha et al., 1988; de Boer, 1995, 1996; Church &

Takacs, 1991; Asadchikov et al., 2003; Renaud et al., 2009).

It is clear that real rough surfaces, in general, do not satisfy

the Gaussian roughness statistics and the K-correlation model,

and one needs to utilize more realistic many-level models. At

present, we can state that the current theoretical approach

does work and can be applied, provided that the proper

statistical model adequately describing a peculiar rough

surface is chosen.

Analytical formulas (20), (21) represent the theoretical

basis to interpret the specular Rspecð�0Þ and non-specular

dR=d�ð�Þ scan data obtained in GISAXS experiments.
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Concerning the formula (20) for the specular reflectivity

Rspecð�0Þ, and how it follows from expression (31), the specular

scattering factor f ðq0Þ apparently is equal to the Debye–

Waller factor fDWðq0Þ ¼ exp½�4k2
zðq0Þ�

2�, provided that

jkzðq0Þ � �zðq0Þj
2�2 � exp½�2k2

zðq0Þ�
2�.

In the opposite case, when the inequality exp½�2k2
zðq0Þ�

2�

� jkzðq0Þ � �zðq0Þj
2�2 � 1 takes place, the specular scat-

tering factor f ðq0Þ is about equal to 0:25jkzðq0Þ � �zðq0Þj
4�4

� 1 with accuracy up to exp½�2k2
zðq0Þ�

2� � 1.

On the other hand, staying within the total reflection region,

�0 <�cr, along with the small r.m.s. roughness �, when both the

inequalities jkzðq0Þ  �zðq0Þj� < 1 take place, the specular

scattering factor f ðq0Þ is equal to the Névot–Croce factor of

1� 4kzðq0ÞReb�zðq0Þc�
2 unlike the Debye–Waller factor of

1� 4k2
zðq0Þ�

2.

Further, we will discuss some features of expressions (19)

and (21) for the non-specular intensity distribution

dR=d�ð�; ’Þ and DSI dR=d�ð�Þ, respectively.

First, it is seen from formulas (19) and (21), they both

contain the same statistical non-specular scattering factor


Rðq; q0Þ that is given by expression (32) along with (33)–(35)

(cf. Appendix B for details) . As it follows from equations

(32)–(35), the factor 
Rðq; q0Þ only depends on the r.m.s.

roughness �. From the physical viewpoint, such a feature has

to remain in general for any roughness statistics and correla-

tion model of a rough surface. In our case the ‘-dependence of

the DSI [equation (21)] arising due to the PSD1Dðq; q0Þ is

determined by the K-correlation model we use [cf. equation

(30)].

In-depth analysis of expressions (33)–(35) shows that in the

case of the small-roughness approximation 2k��0 < 1 the

statistical scattering factor 
Rðq; q0Þ reduces to the corre-

sponding one in Vinogradov et al. (1985), provided that the

inequality max½j�j; j�j; j�j; jj� � 1 holds (cf. Chukhovskii,

2011). Thus, the statistical scattering factor 
Rðq; q0Þ has a

maximum whenever the angles � or �0 are equal to �cr. It is

interesting that the presence of a maximum on 
Rðq; q0Þ at the

scattering angle � close to �cr remains even if the aforemen-

tioned inequality fails (see the numerical calculations in the

next section). As a result, the non-specular intensity distri-

butions [equations (19) and (21)] have a ‘Yoneda scattering’

peak at angle � = �cr (Yoneda, 1963). It is clear that the

‘Yoneda scattering’ peak height depends on the angular width

of the corresponding PSD2Dðq; q0Þ, PSD1Dðq; q0Þ functions,

which in turn are given by the correlation length parameter k‘
[see equations (26) and (30), cf. Appendix A].

Loosely speaking, while one stays in the frame of the K-

correlation model, together both formulas (20) and (21) may

be applied to restore all the surface finish parameters such as

fk�; k‘; hg from the measured scan data, for instance, with the

use of one of the least-square iterative algorithms [see, e.g.,

dynamic parameter-retrieval algorithm (Chukhovskii, 2009)].

However, we can point out a simple way to adjust theore-

tical expressions (20) and (21) to corresponding experimental

scans and, in particular, to extract the FSMI h by not applying

the least-square iterative algorithm.

So, we can use the asymptotic straight-line behaviour of the

theoretical expression (21) in the log–log scale for large

scattering angles �, � � �0 > �cr (cf. Church & Takacs, 1991;

Wong et al., 1991).

It is rather simple to show that, with an increase of scat-

tering angle �, when � � �0, the parameters involved in

equation (35) tend asymptotically to the values

Reð�Þ ’ Reð�Þ ’ Reð�Þ ’ �ReðÞ ffi 2�1=2kzðqÞ� � 1;

Imð�Þ ’ Imð�Þ ’ Imð�Þ ’ �ImðÞ � 1

and, therefore, the factor 
Rðq; q0Þ decreases as


Rðq; q0Þj�=�0�1 / ð�=�0Þ
�2: ð22Þ
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Figure 2
Specular scans Rspeð�0Þ numerically simulated versus grazing-incidence
angle �0: 1, Fresnel; 2, Debye–Waller; 3, present approach. (a) �-Quartz
sample, reference surface f1120g; (b) CdTe sample, reference surface
f111g. The r.m.s. roughness k�: (a) = 40; (b) = 80. Incident X-ray Cu K�1

radiation.
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Figure 3
Normalized scans ½dR=d�ð�; ’Þ�=½dR=d�ð�0; ’ ¼ 0Þ�. Grazing-incidence angle �0=�cr is equal to 2. The r.m.s. roughness k� is equal to 40. Scattering polar
and azimuth angles (�, ’) are measured in units of ð�cr; ’0Þ, �cr ¼ ð�Re�Þ1=2

¼ 10�2:5 and ’0 ¼ ðk‘Þ
�1
¼ ð5Þ�110�4; fractal index h is equal to 1/4 (a), 1/2

(b), 3/4 (c).
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Figure 4
Normalized scans ½dR=d�ð�; ’Þ�=½dR=d�ð�0; ’ ¼ 0Þ�. Grazing-incidence angle �0=�cr is equal to 3. The r.m.s. roughness k� is equal to 40. Scattering polar
and azimuth angles (�, ’) are measured in units of ð�cr; ’0Þ, �cr ¼ ð�Re�Þ1=2

¼ 10�2:5 and ’0 ¼ ðk‘Þ
�1
¼ ð5Þ�110�4; fractal index h is equal to 1/4 (a), 1/2

(b), 3/4 (c).
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Figure 5
Normalized scans ½dR=d�ð�; ’Þ�=½dR=d�ð�0; ’ ¼ 0Þ�. Grazing-incidence angle �0=�cr is equal to 2. The r.m.s. roughness k� is equal to 80. Scattering polar
and azimuth angles (�, ’) are measured in units of ð�cr; ’0Þ, �cr ¼ ð�Re�Þ1=2

¼ 10�2:5 and ’0 ¼ ðk‘Þ
�1
¼ ð5Þ�110�4; fractal index h is equal to 1/4 (a), 1/2

(b), 3/4 (c).
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Figure 6
Normalized scans ½dR=d�ð�; ’Þ�=½dR=d�ð�0; ’ ¼ 0Þ�. Grazing-incidence angle �0=�cr is equal to 3. The r.m.s. roughness k� is equal to 80. Scattering polar
and azimuth angles (�, ’) are measured in units of ð�cr; ’0Þ, �cr ¼ ð�Re�Þ1=2

¼ 10�2:5 and ’0 ¼ ðk‘Þ
�1
¼ ð5Þ�110�4; fractal index h is equal to 1/4 (a), 1/2

(b), 3/4 (c).



In a compartment with asymptotic behaviour of the

PSD1Dðjq� q0jÞ function for � � �0 and k‘� 1, the above

yields a decreasing law for expression (21) of the DSI

dR=d�ð�Þ scan

dR

d�
ð�Þj�=�0�1 / ð�=�0Þ

�4�4h: ð23Þ

The reader should note here that, with an increase in scat-

tering angle �, the statistical scattering factor [equation (32)]

and the PSD1Dðq; q0Þ function in the form (30) go on their

asymptotical values with different ‘�-altering’ speeds. For this

reason, to extract the FSMI h in that way, it is preferable to use

an actual straight-line slope of the statistical scattering factor


Rðq; q0Þ calculated in (32)–(35) in the measurement-window

end of scattering angle �, �/�0 � 1.

4. Numerical run-through for probing deep into the
present approach to the GISAXS problem

In this section, the results of numerical calculations for the

specular and non-specular GISAXS by rough surfaces are

presented staying in the scope of the present approach.

Appropriate evaluations have been made using the averaged

surface parameters such as the r.m.s. roughness k�, correlation

length k‘ and FSMI h.

First, the specular Rspecð�0Þ scans numerically simulated

versus the grazing-incidence angle �0 are shown in Fig. 2, the

angular window being 0<�0=�cr < 10. The dimensionless r.m.s.

roughness parameter k� is equal to (Fig. 2a) 40 and (Fig. 2b)

80.

Note that curves 1 in Fig. 2 correspond to the conventional

Fresnel formula for the specular reflectivity Rspecð�0Þ related to

the specular GISAXS by a flat surface.

It is easy to see that in the case of k� = 40 the Rspecð�0Þ scans

calculated by use of the Debye–Waller factor fDWðq0Þ and

expression (20) along with equation (31) for the specular

scattering factor f ðq0Þ practically coincide with each other

(curves 2 and 3 in Fig. 2a), whereas for k� = 80 the curves 2

and 3 in Fig. 2(b) are about the same up to angles �0=�cr < 3

and then sharply diverge for angles �0=�cr > 3. In this case, the

behaviour of curve 3 in Fig. 2(b) is determined by the specular

scattering factor f ðq0Þ as 0:25jkzðq0Þ � �zðq0Þj
4�4 � 1.

Here we remind the reader again that in Fig. 2, curves 2 are

calculated by use of the conventional Debye–Waller factor

fDWðq0Þ, whereas curves 3 are calculated using the specular

scattering factor f ðq0Þ in the form of equation (31) obtained in

the frame of the present approach.

An assortment of computer simulations for the non-

specular intensity distribution dRð�; ’Þ=d� and DSI dR=d�ð�Þ
have been carried out according to expressions (19)

and (21).

As it follows from an analysis of equations (19), (21), all of

them support the previously made assertion that the ‘Yoneda

scattering’ peak increases (decreases) with decreasing

(increasing) the parameter k‘ (and/or the grazing-incidence

angle �0, �0 > �cr).

Examples of the non-specular intensity distribution

dRð�; ’Þ=d� and DSI dR=d�ð�Þ, numerically simulated in the

scope of the present approach, are depicted in Figs. 3–6 and

Figs. 7–10. The calculations have been carried out for the

diverse r.m.s. roughness � and FSMI h; correlation length ‘ is

assumed to be equal to 1.225 mm.

For clarity, the additional upper axis of ðq0 � qÞ coordinate

normalized to the value of q0 � 10�5 is shown in Figs. 7–10,

where ðq0 � qÞ is the wavevector transfer at the scattering

azimuth angle ’ ¼ 0 and q ¼ k cos �, q0 ¼ k cos �0, respec-

tively.
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Figure 7
DSI scans of dR=d�ð�Þ numerically simulated using equation (21) along
with equations (30) and (32)–35). Grazing-incidence angle �0/�cr is equal
to 2; the r.m.s. roughness k� is equal to 40; fractal index h is equal to:
(curve 1) = 1/4; (curve 2) = 1/2; (curve 3) = 3/4.

Figure 8
DSI scans of dR=d�ð�Þ numerically simulated using equation (21) along
with equations (30) and (32)–35). Grazing-incidence angle �0/�cr is equal
to 3; the r.m.s. roughness k� is equal to 40; fractal index h is equal to:
(curve 1) = 1/4; (curve 2) = 1/2; (curve 3) = 3/4.



Figs. 3–6 and Figs. 7–10 support the fact that the ‘Yoneda

scattering’ peak decreases (increases) with decreasing

(increasing) the grazing-incidence angle �0, �0 > �cr, even

beyond the constraint 2k��0 < 1.

Herein, special attention must be paid to the fact that the

FSMI h value is nothing else but the corresponding straight-

line slopes of the DSI dR=d�ð�Þ in the log–log scale for

�/�0 � 1.

Indeed, using formula (21) along with equation (30), one

can calculate the asymptotic value derivative of the expression

� log½dR=d�ð�Þ� and/or with respect to the variable log[�/�0] or

lnðq0 � qÞ.

Accordingly, taken for �/�0 � 1 they are equal to

d

d lnð�=�0Þ
log �

dR

d�
ð�; �0Þ=
Rð�; �0Þ

� 	� �
�=�0�1

��� ¼ 2þ 4h;

ð24Þ

d

d lnðq0 � qÞ
log �

dR

d�
ðq; q0Þ

q0

q


 �1=2

=
Rðq; q0Þ

" #( )
�=�0�1

���
¼ 1þ 2h; ð25Þ

where ðq0 � qÞ is the wavevector transfer at the scattering

azimuth angle ’ ¼ 0.

It should be noticed that estimate (25) is more accurate

since it does not require one to expand the variable ln(q0 � q)

over the small values of �, �0 � 1.

Accordingly, the asymptotic FSMI values hasym numerically

calculated at the angle �=�cr ¼ 10 are listed in Table 1. It is

seen that hasym fit the true values of the FSMI h (assumed to

evaluate the non-specular DSI scans) more accurately in the

case of �0=�cr ¼ 2 than for �0=�cr ¼ 3.

5. Direct determination of the finish parameters of
rough surfaces from the specular Rspec(h0) and non-
specular dR/dh(h) scans

Herein, implementation of the present approach is demon-

strated on the example of the specular reflectivity Rspecð�0Þ and

non-specular DSI dR=d�ð�Þ measured for the two solid

samples: (a) �-quartz, reference surface plane f1120g and (b)

CdTe, reference surface plane f111g.

The surface of the �-quartz sample was finished by

mechanical polishing with iron oxide powders that contained

grains of different sizes. The sample was cleaned with ethanol

just before the experimental measurements.

The surface of the CdTe sample was polished using the

chemical mechanical polishing technique with potassium

iodate reagents.

The experimental setup is drawn schematically in Fig. 11(a).

It is designed on the basis of a goniometer of a triple-crystal

X-ray spectrometer equipped with a triple-slit collimation
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Figure 9
DSI scans of dR=d�ð�Þ numerically simulated using equation (21) along
with equations (30) and (32)–35). Grazing-incidence angle �0/�cr is equal
to 2; the r.m.s. roughness k� is equal to 80; fractal index h is equal to:
(curve 1) = 1/4; (curve 2) = 1/2; (curve 3) = 3/4.

Figure 10
DSI scans of dR=d�ð�Þ numerically simulated using equation (21) along
with equations (30) and (32)–35). Grazing-incidence angle �0/�cr is equal
to 3; the r.m.s. roughness k� is equal to 80; fractal index h is equal to:
(curve 1) = 1/4; (curve 2) = 1/2; (curve 3) = 3/4.

Table 1
The FSMI values hasym computed at the angular point � = 10�cr according
to expressions (24) and (25).

The incident angle �0=�cr is equal to (a) 2, (b) 3; correlation length ‘ ¼
0.1225 mm.

k�

40 80

h hasym hasym

(a)
1/4 [0.2812, 0.2497] [0.2816, 0.2502]
1/2 [0.5415, 0.4996] [0.5420, 0.2500]
3/4 [0.8019, 0.7499] [0.8025, 0.7501]

(b)
1/4 [0.3245, 0.2913] [0.3250, 0.2919]
1/2 [0.5993, 0.5555] [0.5999, 0.5557]
3/4 [0.8741, 0.8187] [0.8748, 0.8695]



system. Both the Cu K�1 radiation tube and the one-dimen-

sional scintillation detector are mobile in the � plane, their

angular displacements are controlled by angular encoders with

precision up to 2 arcsec.

In order to decrease the intensity of parasitic scattering, the

special vacuum tract waveguide is placed between the sample

and scintillation detector slit, allowing one to decrease para-

sitic background scattering up to one order factor (Asad-

chikov et al., 2003). The angular divergent FWHM 	�0 of the

incident X-ray beam was approximately equal to 70 arcsec.

The angular step ��0 was changed from 20 to 200 arcsec

during the measurements. The detector slit width was constant

and equal to 1000 mm in the case of the specular reflectivity

measured, whereas it could be changed from 60 to 500 mm for

collecting the DSI data.

The ‘small-signal part’ of the DSI scan was measured with

the detector slit width increased to 500 mm, then normalized to

the rest of the DSI scan that was measured with the detector

slit width of 60 mm. The noise background level of the X-ray

radiation was 0.3 counts s�1. This means that for the specular

reflectivity Rspecð�0Þ measured with sufficient accuracy the

latter determines the angular interval f�0g in which it might be

collected up to 10�6–10�7 of the incident X-ray beam intensity.

In order to improve the signal-to-noise ratio and thus

minimize the X-ray count measurement errors, the specular

reflectivity and non-specular DSI scans are collected three

times at each angular position, so their averaged values are

assumed as the DSI scan data.

The specular Rspeð�0Þ and non-specular DSI dR=d�ð�Þ scans

for both the �-quartz and CdTe samples measured and

calculated are presented in Figs. 12 and 13.

Fig. 12 contains the experimentally measured and numeri-

cally simulated specular reflectivity Rspecð�0Þ scans of (a)

�-quartz and (b) CdTe. From Fig. 12 it is clearly seen that for

the r.m.s. roughness [(a) � = 0.8 nm and (b) � = 3.5 nm] the

experimental Rspecð�0Þ scans match the theoretical ones rather

well. In our case, measurements of the specular reflectivity in

the angular ranges f�0ig, i = 1, 2, 3 . . . , up to �0i=�cr ¼ 5 provide

the maximum statistical error equal to 0.05 for �-quartz and

0.35 for CdTe.
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Figure 11
Schematic (a) and photo (b) of the GISAXS experimental setup. (a) 1,
the X-ray radiation source tube; 2, 4, 6, aperture slits; 3, crystal
monochromator; 5, vacuum X-ray path tube with both the end-side
radiolucent windows; 7, sample; 8, ring-holder for the X-ray radiation
source; 9, alignment table; 10, ring-holder for detector; 11, scintillation
detector.

Figure 12
Specular Rspeð�0Þ scans experimentally measured (curves 1) and
numerically simulated (curves 2) for the �-quartz sample in (a)
and CdTe sample in (b). The r.m.s. roughness �, correlation length ‘
and fractal index h chosen to match the measured and calculated scans to
each other are equal to: (a) � = 0.8 nm; (b) � = 3.5 nm.



Both the experimental and theoretical DSI scans super-

posed at the ‘Yoneda scattering peak’ position, �=�cr ffi 1, are

shown in Fig. 13. The r.m.s. roughnesses � are assumed to be

the same as they are used for calculating the theoretical scans

Rspecð�0Þ in Fig. 12.

As it follows from Fig. 13, the theoretical DSI scans are in

good agreement with the theoretical ones for the corre-

sponding values of the FSMI h = 1/4 and correlation length

‘ ¼ 2.45 mm in Fig. 13(a), FSMI h = 1/12 and correlation

length ‘ ¼ 0.1225 mm in Fig. 13(b). In the angular ranges f�ig, i

= 1, 2, 3 . . . , up to �i=�cr ¼ 8, the DSI measurements provide

the maximum statistical error equal to 0.25 for �-quartz and

0.20 for CdTe.

It is interesting that the experimental DSI scans in Figs.

13(a) and 13(b) are rather different around the point � ¼ 2�0

where the specular scattering occurs. Indeed, a direct analysis

shows that in the case of the CdTe sample (Fig. 13b) the

specular scattering is less by an order of magnitude than the

non-specular scattering, whereas in the case of the �-quartz

sample (Fig. 13a) the experimental DSI peak at the point

� ¼ 2�0 is mainly due to the specular scattering. From Fig.

13(a), the FWHM value about equal to 70 arcsec is nothing

but the FWHM 	�0 of the incident X-ray beam.

6. Conclusion

In conclusion, based on the analytical and numerical results

obtained, we can state that the present approach provides a

plausible description of the GISAXS phenomenon beyond the

constraint 2k��0 < 1. The plane q-eigenwave formalism allows

one to derive integral equations (11a), (11b) that, in turn, can

be used in a simple way to build up the first-order iteration

solution [equations (14a), (14b)] for the reflected and trans-

mitted plane q-eigenwaves propagating through the twofold

rough medium.

Other key assumptions such as the Gaussian roughness

statistics and K-correlation model of a rough surface that

provides expressions (26) and (30) with PSD2Dðjq� q0jÞ and

PSD1Dðq; q0Þ functions have been used to develop the present

approach of the GISAXS theory.

From the run-through of the numerically simulated and

experimentally measured specular Rspecð�0Þ and DSI dR=d�ð�Þ
scans (see xx5, 6), the present approach allows one to directly

estimate the surface finish parameters f�; ‘; hg. With some

confidence, it can be favourably applied to retrieve the surface

finish parameters from experimental GISAXS data beyond

the constraint 2k��0 < 1.

At this point, it should be noted once more that the present

approach embraces the GISAXS problem even if other

roughness statistics and non-fractal surface models have to be

applied.

On the other hand, the question of whether the theoretical

approach elaborated here on the whole is effective or whether

it should be given up in favour of other approaches, which

should be applied instead, remains a good topic for future

work.

APPENDIX A

According to Kato (1980), the two-point isotropic cumulant

correlation function K2ðjx1 � x2jÞ is in general possessed of

the properties: K2ðxÞ ¼ 1 for x ¼ 0 and K2ðxÞ ! 0 for

x=‘!1 (x ¼ jxj, the lateral two-dimensional vector

x ¼ x1 � x2 lies within the reference plane z = 0, ‘ is the

correlation length).
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Figure 13
Non-specular DSI dR=d�ð�Þ scans experimentally measured (curves 1)
and numerically simulated (curves 2) for the �-quartz sample in (a) and
CdTe sample in (b). The r.m.s. roughness �, correlation length ‘ and
fractal index h chosen to match the measured and calculated scans to each
other are equal to: (a) � = 0.8 nm; (b) � = 3.5 nm; (a) curve 2 ‘ ¼ 2.45 mm
and h = 1/4; (b) curve 2 ‘ ¼ 0.1225 mm and h = 1/12.



To derive the expressions under consideration for the

non-specular intensity distributions dR=d�ð�; ’Þ and DSI

dR=d�ð�Þ, one needs to utilize the two-dimensional Fourier

transform of the correlation function K2ðxÞ that is referred to

as the so-called power spectrum density function, in brief, the

PSD2DðqÞ function, where the lateral two-dimensional vectors

q, q0 are parallel to the reference plane z = 0, q ¼ jqj, q0 ¼ jq0j

(see, e.g., Church & Takacs, 1991; Asadchikov et al., 2003).

Following Church & Takacs (1991), we use the K-correla-

tion model for the PSD2Dðjq� q0jÞ function taken in the form

PSD2Dðjq� q0jÞ ¼
4�h‘2

1þ ðjq� q0j‘Þ
2

� �1þh
; ð26Þ

where h is the fractal surface model index (FSMI).

Here, the two-dimensional lateral vectors q and q0 are: q =

k(cos � cos ’, cos � sin ’, 0) and q0 = k (cos �0, 0, 0) (cf. Fig. 1).

Comprehensive arguments on the application of equation

(26) to the PSD2Dðjq� q0jÞ function in the cases of solid

surface interfaces have been discussed by Sinha et al. (1988),

Church & Takacs (1991), Asadchikov et al. (2003).

In general (Church & Takacs, 1991), it is possible to write

the PSD2DðqÞ function as a sum of several terms of the form of

equation (26).

It should be noted that in accordance with expression (26)

the cumulant correlation function K2ðxÞ is equal to (cf. Church

& Takacs, 1991)

K2ðxÞ ¼
hðx=‘Þh

2h�1�ðhþ 1Þ
K�hðx=‘Þ; ð27Þ

where K�hðx=‘Þ is a modified Bessel function of the second

kind.

Correspondingly, K2ð0Þ ¼ 1 for x ¼ 0 and in a limit of

x=‘!1 it exponentially tends to zero as ðh 6¼ 1=2Þ

K2ðxÞ ¼
hðx=‘Þh

2h�1�ðhþ 1Þ

�

2x=‘


 �1=2

expð�x=‘Þ½1þ 0ð‘=xÞ�:

ð28Þ

It is interesting that for the FSMI h = 1/2 the cumulant

correlation function [equation (27)] exactly coincides with the

exponential expression expð�x=‘Þ for the height–height

roughness correlation function (Sinha et al., 1988).

In order to interpret the DSI dR=d�ð�; �0Þ-scan data, in

addition to the PSD2Dðjq� q0jÞ function one needs to utilize

the PSD1Dðq; q0Þ function that is defined as the integral of

the PSD2Dðjq� q0jÞ function over the scattering azimuth

angle ’:

PSD1Dðq; q0Þ ¼
R�
��

d’PSD2Dðjq� q0jÞ: ð29Þ

After the straightforward routine calculations one obtains the

following expression for the PSD1Dðq; q0Þ function (k‘� 1 is

assumed to be satisfied):

PSD1Dðq; q0Þ

¼
4�h‘

ðqq0Þ
1=2 1þ ‘2ðq� q0Þ

2
� �1=2þh

� 1
2

 �
�ðhþ 1Þ

� hþ
1

2


 �
; ð30Þ

where ðq0 � qÞ is the wavevector transfer at the scattering

azimuth angle ’ ¼ 0 and �ðtÞ is the well known gamma

function, �ð1=2Þ ¼ ð�Þ1=2.

APPENDIX B

By using solution (14a) for the non-averaged plane eigen-

wave amplitude B1ðqÞ and taking into account the Gaussian

statistics to evaluate B1ðqÞ and the Kato cumulant average of

½B1ðqÞ � B


1ðqÞ�jcum, the calculations similar to analogous ones

in Chukhovskii (2011) yield the following analytical expres-

sions for the specular and non-specular scattering factors,

f ðq0Þ and 
Rðq; q0Þ, namely

f ðq0Þ ¼
��1� exp½�0:5ð�zðq0Þ � kzðq0ÞÞ

2�2
�

þ exp½�0:5ð�zðq0Þ þ kzðq0ÞÞ
2�2
�
��2 ð31Þ

and


Rðq; q0Þ ¼ 
R1ðq; q0Þ � 
R2ðq; q0Þ; ð32Þ

where


R1ðq; q0Þ ¼ 0:25k2�2
�

fjT1ðqÞj
2
ðj�j�2

ð1þ exp½Im2ð�þ �Þ�Erfc½Imð�þ �Þ�

� 2Re½expð��2
ÞErfc½�i���Þ

þ j�j�2
jR1ðq0Þj

2
ð1þ exp½Im2

ð�þ �Þ�Erfc½Imð�þ �Þ�

� 2Re½expð��2ÞErfc½�i���Þ þ 2Re½��1ð�
Þ�1R1ðq0Þ

� ð1þ exp½�ð�� �
Þ2�Erfc½�ið�� �
Þ�

� exp½�ð�
Þ2�Erfc½i�
� � exp½��2
�Erfc½�i��Þ�Þ

þ jT1ðq0Þj
2
ðj�j�2

ð1þ exp½Im2ð�þ Þ�Erfc½�Imð�þ Þ�

� 2Re½expð��2
ÞErfc½i���Þ

þ �2
jR1ðqÞj

2
ð1þ 1þ exp½Im2

ð�þ Þ�Erfc½�Imð�þ Þ�

� 2Re½expð�2ÞErfc½i��Þ

þ 2Re½�1
ð�
Þ�1

R1ðqÞð1þ exp½�ð� �
Þ2�Erfc½ið� �
Þ�

� exp½�ð�
Þ2�Erfc½�i�
� � exp½�2�Erfc½i�Þ�Þg ð33Þ


R2ðq; q0Þ ¼ 0:25k2�2

����T1ðqÞð�
�1 exp½��2

�Erfc½�i��

þ ��1R1ðq0Þ exp½��2�Erfc½�i�� � 1Þ

þ T1ðq0Þð�
�1 exp½��2

�Erfc½i��

þ �1R1ðqÞ exp½�2�Erfc½i� � 1Þ

����
2

: ð34Þ

In the above, there is the complementary error function

Erfc½w� for complex argument w that is a quantity of some

combinations of the dimensionless z-component wavevectors

related to the diverse X-ray scattering processes of the plane

q-waves (cf. Chukhovskii, 2011):
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� ¼ 2�1=2� �zðqÞ þ kzðq0Þ
� �

; � ¼ 2�1=2� �zðqÞ � kzðq0Þ
� �

;

� ¼ 2�1=2� �zðq0Þ þ kzðqÞ
� �

;  ¼ 2�1=2� �zðq0Þ � kzðqÞ
� �

:

ð35Þ
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